
Denny Cherry
mrdenny@dcac.co

twitter.com/mrdenny



 Denny Cherry & Associates Consulting

 People Talking Tech

 Author or Coauthor of 5 books

 8+ SQL Mag articles

 Dozens of other articles

 Microsoft MVP

 Microsoft Certified Master

 VMware vExpert

 Microsoft Certified Trainer

2



 Introduce the different kinds of indexes

 Common Misconceptions about indexes

 Downsides to indexes

 Introduce advanced index tuning techniques

 Q & A



 Introduce the different kinds of indexes

 Common Misconceptions about indexes

 Downsides to indexes

 Introduce advanced index tuning techniques

 Q & A



 Five Kinds of Indexes
◦ Clustered

◦ Non-clustered

◦ Full Text

◦ XML

◦ ColumnStore Indexes

 There’s new stuff in SQL Server 2012
◦ Semantic Search



 1 Clustered Index per table

 Contain Full Copy of row data within in the index

 Up to 16 indexed columns can be part of the 
index
◦ (15 if the table contains any XML indexes)

 Primary Key will by default be the Clustered Index

 Must be created on the same filegroup as the 
table

 Clustered Indexes should be as narrow as 
possible

 While not required, they are highly recommended



 Up to 999 per table Starting with SQL Server 2008
◦ 255 in SQL Server 2005 and below

 Up to 16 indexed columns in the index

 Non-indexed columns can be included via INCLUDE 
statement

 Non-Clustered indexes always contain the clustered 
index columns (when table has a clustered index)

 When table is a heap, the Row ID is stored in every 
non-clustered index.

 Can be created on any filegroup within the database

 Can be filtered indexes to include fewer rows in the 
index.



 Non-Unique clustered indexes have an extra 
column called the uniqueifier which ensures 
that values within the index are unique. 

 Uniqueifier is only used for rows which are 
not unique.

EmpId Uniqufier

1

2

3

4 0

4 1

5

6

7 0

7 1

8



 Not accessed via normal SELECT statements
 Require use of a predicate:
◦ CONTAINS
◦ CONTAINSTABLE
◦ FREETEXT
◦ FREETEXTTABLE

 Can be used to search binary values (doc, 
docx, xls, pdf) stored within the database.

 Natural Language Search
 Can index XML documents, but only indexes 

the values, not the tags.



 Created and managed outside of the 
database via Microsoft Search Service

 Backed up with the database (starting in SQL 
2005)

 Searches entire index and returns all 
matches, which you then filter against your 
normal table to return correct set of rows.



 Now stored within the database

 Command is still parsed via MS Search 
service, but looking is done natively

 Full text search now only searches the 
required subset of rows

 When creating your indexes use an identity 
field as the key to improve query 
performance.



 Allows you to index specific nodes of the XML 
document

 249 XML Indexes pre table

 Requires a Clustered Index on the table

 Each xml column can have a single primary XML 
index and multiple secondary XML indexes

 XML Indexes can only be created on a single XML 
Column

 No online rebuilds

 Not available for XML variables. Only used on 
tables.



 When created creates a hidden node table
◦ Contains base table primary key and 12 columns of 

info about every node within the XML value

 Effectively the clustered index on the node 
table
◦ Base Table Clustered Index Value

◦ Node id from the node table

 Increases storage 200-500%



 Non-Clustered Indexes on the hidden node 
table

 Three kinds of secondary indexes
◦ PATH index on the node id (path) and the value

◦ VALUE index is on the value and the node id (path)

◦ PROPERTY index is on the base table’s clustered 
index, node id (path) and the value



 Introduce the different kinds of indexes

 Common Misconceptions about indexes

 Downsides to indexes

 Introduce advanced index tuning techniques

 Q & A



 Indexes don’t require maintenance

 If I create one index for each column in my 
where clause I’ll be fine

 The table is sorted based on the order of the 
Clustered Index

 Clustered Indexes are required



 Introduce the different kinds of indexes

 Common Misconceptions about indexes

 Downsides to indexes

 Introduce advanced index tuning techniques

 Q & A



 Indexes take up space
◦ On large complex databases the indexes can take 

up more space than the table

◦ Data is duplicated in each index which contains the 
column

 Indexes slow down insert, update, delete 
(especially full text indexes) statements

 Using the wrong index can be slower than 
using no index

 Encrypted data can’t be effectively indexed



 Introduce the different kinds of indexes

 Common Misconceptions about indexes

 Downsides to indexes

 Introduce advanced index tuning techniques

 Q & A



 Fillfactor
◦ Tells the SQL Server how much free space to leave 

in the leaf level pages.

 Padding
◦ Tells the SQL Server to use the Fillfactor setting to 

leave free space in the intermediate-level pages.

 Online Rebuilds

 Data Compression



 Totally new and different approach to indexing

 Data is stored via columns not rows

 Each column is stored separately, then compressed 
using VertiPak compression engine

 SQL Server’s first B-Tree less index



C1 C
2

C3 C5 C6C4



 Data continues to grow, but performance 
requirements stay the same

 Many data warehouses approach PB ranges

 Data needs to be filtered, aggregated, and 
grouped despite the size of the dataset



 Unsupported Data Types include
◦ Uniqueidentifier

◦ Blob

◦ Numeric (19,2) or higher

 Read Only

 OUTER JOINs using ColumnStore don’t 
perform well



CREATE INDEX MyIndex ON dbo.MyTable

ON (Col1, Col5, Col3)

INCLUDE (Col4, Col2)

WHERE Col6 = ‘Value3’

WITH (FILLFACTOR=70, PAD_INDEX=ON, 
ONLINE=ON, DATA_COMPRESSION = ROW | 
PAGE);



Clustered (BOL 2005 / 2008)
Non-Clustered (BOL 2005 / 
2008)

ms-help://MS.SQLCC.v9/MS.SQLSVR.v9.en/udb9/html/26b28045-c3c2-465a-b564-bf2189e93fdc.htm
ms-help://MS.SQLCC.v10/MS.SQLSVR.v10.en/s10de_0evalplan/html/26b28045-c3c2-465a-b564-bf2189e93fdc.htm
ms-help://MS.SQLCC.v9/MS.SQLSVR.v9.en/udb9/html/1efeba1f-f848-4861-9af3-594e5ab3b597.htm
ms-help://MS.SQLCC.v10/MS.SQLSVR.v10.en/s10de_0evalplan/html/1efeba1f-f848-4861-9af3-594e5ab3b597.htm


 SELECT *

 FROM sys.dm_db_index_physical_stats
(db_id(), object_id(‘table_name’), null, null, 
‘detailed’)
◦ Database Id

◦ Object Id

◦ Index Id

◦ Partition Number

◦ Mode (NULL | Limited, Sampled, Detailed)



 DECLARE @dbid INT

 , @dbName VARCHAR(100);



 SELECT @dbid = DB_ID()

 , @dbName = DB_NAME();



 WITH partitionCTE (OBJECT_ID, index_id, row_count, partition_count)

 AS

 (

 SELECT [OBJECT_ID]

 , index_id

 , SUM([ROWS]) AS 'row_count'

 , COUNT(partition_id) AS 'partition_count'

 FROM sys.partitions

 GROUP BY [OBJECT_ID]

 , index_id

 )



 SELECT OBJECT_NAME(i.[OBJECT_ID]) AS objectName

 , i.name

 , CASE

 WHEN i.is_unique = 1

 THEN 'UNIQUE '

 ELSE ''

 END + i.type_desc AS 'indexType'

 , ddius.user_seeks

 , ddius.user_scans

 , ddius.user_lookups

 , ddius.user_updates

 , cte.row_count

 , CASE WHEN partition_count > 1 THEN 'yes'

 ELSE 'no' END AS 'partitioned?'

 , CASE

 WHEN i.type = 2 And i.is_unique = 0

 THEN 'Drop Index ' + i.name

 + ' On ' + @dbName

 + '.dbo.' + OBJECT_NAME(ddius.[OBJECT_ID]) + ';'

 WHEN i.type = 2 And i.is_unique = 1

 THEN 'Alter Table ' + @dbName

 + '.dbo.' + OBJECT_NAME(ddius.[OBJECT_ID])

 + ' Drop Constraint ' + i.name + ';'

 ELSE ''

 END AS 'SQL_DropStatement'

 FROM sys.indexes AS i



 http://mrdenny.com/res/table-indexing-net



Q & A



mrdenny@dcac.co
http://www.dcac.co

http://www.twitter.com/mrdenny


