
Denny Cherry
mrdenny@dcac.co

twitter.com/mrdenny



 Denny Cherry & Associates Consulting

 People Talking Tech

 Author or Coauthor of 5 books

 8+ SQL Mag articles

 Dozens of other articles

 Microsoft MVP

 Microsoft Certified Master

 VMware vExpert

 Microsoft Certified Trainer

2



 Introduce the different kinds of indexes

 Common Misconceptions about indexes

 Downsides to indexes

 Introduce advanced index tuning techniques

 Q & A



 Introduce the different kinds of indexes

 Common Misconceptions about indexes

 Downsides to indexes

 Introduce advanced index tuning techniques

 Q & A



 Five Kinds of Indexes
◦ Clustered

◦ Non-clustered

◦ Full Text

◦ XML

◦ ColumnStore Indexes

 There’s new stuff in SQL Server 2012
◦ Semantic Search



 1 Clustered Index per table

 Contain Full Copy of row data within in the index

 Up to 16 indexed columns can be part of the 
index
◦ (15 if the table contains any XML indexes)

 Primary Key will by default be the Clustered Index

 Must be created on the same filegroup as the 
table

 Clustered Indexes should be as narrow as 
possible

 While not required, they are highly recommended



 Up to 999 per table Starting with SQL Server 2008
◦ 255 in SQL Server 2005 and below

 Up to 16 indexed columns in the index

 Non-indexed columns can be included via INCLUDE 
statement

 Non-Clustered indexes always contain the clustered 
index columns (when table has a clustered index)

 When table is a heap, the Row ID is stored in every 
non-clustered index.

 Can be created on any filegroup within the database

 Can be filtered indexes to include fewer rows in the 
index.



 Non-Unique clustered indexes have an extra 
column called the uniqueifier which ensures 
that values within the index are unique. 

 Uniqueifier is only used for rows which are 
not unique.

EmpId Uniqufier

1

2

3

4 0

4 1

5

6

7 0

7 1

8



 Not accessed via normal SELECT statements
 Require use of a predicate:
◦ CONTAINS
◦ CONTAINSTABLE
◦ FREETEXT
◦ FREETEXTTABLE

 Can be used to search binary values (doc, 
docx, xls, pdf) stored within the database.

 Natural Language Search
 Can index XML documents, but only indexes 

the values, not the tags.



 Created and managed outside of the 
database via Microsoft Search Service

 Backed up with the database (starting in SQL 
2005)

 Searches entire index and returns all 
matches, which you then filter against your 
normal table to return correct set of rows.



 Now stored within the database

 Command is still parsed via MS Search 
service, but looking is done natively

 Full text search now only searches the 
required subset of rows

 When creating your indexes use an identity 
field as the key to improve query 
performance.



 Allows you to index specific nodes of the XML 
document

 249 XML Indexes pre table

 Requires a Clustered Index on the table

 Each xml column can have a single primary XML 
index and multiple secondary XML indexes

 XML Indexes can only be created on a single XML 
Column

 No online rebuilds

 Not available for XML variables. Only used on 
tables.



 When created creates a hidden node table
◦ Contains base table primary key and 12 columns of 

info about every node within the XML value

 Effectively the clustered index on the node 
table
◦ Base Table Clustered Index Value

◦ Node id from the node table

 Increases storage 200-500%



 Non-Clustered Indexes on the hidden node 
table

 Three kinds of secondary indexes
◦ PATH index on the node id (path) and the value

◦ VALUE index is on the value and the node id (path)

◦ PROPERTY index is on the base table’s clustered 
index, node id (path) and the value



 Introduce the different kinds of indexes

 Common Misconceptions about indexes

 Downsides to indexes

 Introduce advanced index tuning techniques

 Q & A



 Indexes don’t require maintenance

 If I create one index for each column in my 
where clause I’ll be fine

 The table is sorted based on the order of the 
Clustered Index

 Clustered Indexes are required



 Introduce the different kinds of indexes

 Common Misconceptions about indexes

 Downsides to indexes

 Introduce advanced index tuning techniques

 Q & A



 Indexes take up space
◦ On large complex databases the indexes can take 

up more space than the table

◦ Data is duplicated in each index which contains the 
column

 Indexes slow down insert, update, delete 
(especially full text indexes) statements

 Using the wrong index can be slower than 
using no index

 Encrypted data can’t be effectively indexed



 Introduce the different kinds of indexes

 Common Misconceptions about indexes

 Downsides to indexes

 Introduce advanced index tuning techniques

 Q & A



 Fillfactor
◦ Tells the SQL Server how much free space to leave 

in the leaf level pages.

 Padding
◦ Tells the SQL Server to use the Fillfactor setting to 

leave free space in the intermediate-level pages.

 Online Rebuilds

 Data Compression



 Totally new and different approach to indexing

 Data is stored via columns not rows

 Each column is stored separately, then compressed 
using VertiPak compression engine

 SQL Server’s first B-Tree less index



C1 C
2

C3 C5 C6C4



 Data continues to grow, but performance 
requirements stay the same

 Many data warehouses approach PB ranges

 Data needs to be filtered, aggregated, and 
grouped despite the size of the dataset



 Unsupported Data Types include
◦ Uniqueidentifier

◦ Blob

◦ Numeric (19,2) or higher

 Read Only

 OUTER JOINs using ColumnStore don’t 
perform well



CREATE INDEX MyIndex ON dbo.MyTable

ON (Col1, Col5, Col3)

INCLUDE (Col4, Col2)

WHERE Col6 = ‘Value3’

WITH (FILLFACTOR=70, PAD_INDEX=ON, 
ONLINE=ON, DATA_COMPRESSION = ROW | 
PAGE);



Clustered (BOL 2005 / 2008)
Non-Clustered (BOL 2005 / 
2008)

ms-help://MS.SQLCC.v9/MS.SQLSVR.v9.en/udb9/html/26b28045-c3c2-465a-b564-bf2189e93fdc.htm
ms-help://MS.SQLCC.v10/MS.SQLSVR.v10.en/s10de_0evalplan/html/26b28045-c3c2-465a-b564-bf2189e93fdc.htm
ms-help://MS.SQLCC.v9/MS.SQLSVR.v9.en/udb9/html/1efeba1f-f848-4861-9af3-594e5ab3b597.htm
ms-help://MS.SQLCC.v10/MS.SQLSVR.v10.en/s10de_0evalplan/html/1efeba1f-f848-4861-9af3-594e5ab3b597.htm


 SELECT *

 FROM sys.dm_db_index_physical_stats
(db_id(), object_id(‘table_name’), null, null, 
‘detailed’)
◦ Database Id

◦ Object Id

◦ Index Id

◦ Partition Number

◦ Mode (NULL | Limited, Sampled, Detailed)



 DECLARE @dbid INT

 , @dbName VARCHAR(100);



 SELECT @dbid = DB_ID()

 , @dbName = DB_NAME();



 WITH partitionCTE (OBJECT_ID, index_id, row_count, partition_count)

 AS

 (

 SELECT [OBJECT_ID]

 , index_id

 , SUM([ROWS]) AS 'row_count'

 , COUNT(partition_id) AS 'partition_count'

 FROM sys.partitions

 GROUP BY [OBJECT_ID]

 , index_id

 )



 SELECT OBJECT_NAME(i.[OBJECT_ID]) AS objectName

 , i.name

 , CASE

 WHEN i.is_unique = 1

 THEN 'UNIQUE '

 ELSE ''

 END + i.type_desc AS 'indexType'

 , ddius.user_seeks

 , ddius.user_scans

 , ddius.user_lookups

 , ddius.user_updates

 , cte.row_count

 , CASE WHEN partition_count > 1 THEN 'yes'

 ELSE 'no' END AS 'partitioned?'

 , CASE

 WHEN i.type = 2 And i.is_unique = 0

 THEN 'Drop Index ' + i.name

 + ' On ' + @dbName

 + '.dbo.' + OBJECT_NAME(ddius.[OBJECT_ID]) + ';'

 WHEN i.type = 2 And i.is_unique = 1

 THEN 'Alter Table ' + @dbName

 + '.dbo.' + OBJECT_NAME(ddius.[OBJECT_ID])

 + ' Drop Constraint ' + i.name + ';'

 ELSE ''

 END AS 'SQL_DropStatement'

 FROM sys.indexes AS i



 http://mrdenny.com/res/table-indexing-net



Q & A



mrdenny@dcac.co
http://www.dcac.co

http://www.twitter.com/mrdenny


