Identifying SQL Server Performance Problems Part 3

Published On: 2021-02-24By:

Continuing with our Performance Tuning series as you have learned baselining and knowing your normal system performance metrics is an important part of performance tuning. In part 1 we discussed collecting vital system metrics such as CPU Utilization and Memory usage. In part 2 we took a glimpse into how we can gather those metrics and other using the different tools that are available to use like Performance Monitor, Profiler, Extended Events and DMVs. In this part 3 we will look at how identifying the appropriate waits events and corresponding resolution will be critical for resolving performance issues. But first you need to understand what waits are and where to find the information needed to identify waits in your system.

When a thread is being executed and is forced to wait on something this is called queueing. The thread waits for system resources, lining up in a first come first served fashion waiting for things like a CPU scheduler. The time waiting between actively running and suspended (waiting) states is the measurable wait event that SQL Server keeps track of via using. internal metrics. The database engine tracks why executed waits must wait and how long they are queuing for resource threads. These are commonly called wait statistics. These metrics are easily discernible using the dynamic management view (DMV) sys.dm_os_wait_stats (or in Azure SQL Database sys.dm_db_wait_stats).  This information is important to understanding what baseline performance of your database and can help you identify specific performance issues both with query execution and hardware limitations. Data gained from this view can be aggregated and tracked to provide a clearer picture on what might be causing the executed thread to wait. Knowing the top waits that occur in your environment is a key task for all DBAs. Below you will learn common actionable waits as well as those that are benign and occur normally as part of SQL Servers thread queueing process.

Check out the full part 3 article on the Idera Community Site.

The post Identifying SQL Server Performance Problems Part 3 appeared first on A Shot of SQLEspresso.

Contact the Author | Contact DCAC

Azure Data Factory Activity Failures and Pipeline Outcomes

Published On: 2021-02-18By:

Question: When an activity in a Data Factory pipeline fails, does the entire pipeline fail?
Answer: It depends

In Azure Data Factory, a pipeline is a logical grouping of activities that together perform a task. It is the unit of execution – you schedule and execute a pipeline. Activities in a pipeline define actions to perform on your data. Activities can be categorized as data movement, data transformation, or control activities.

In many instances, when an activity fails during a pipeline run, the pipeline run will report failure as well. But this is not always the case.

There are two main scenarios where an activity would report failure, but the pipeline would report success:

  • The maximum number of retry attempts is greater than 0, and the initial activity execution fails but the second attempt succeeds
  • The failed activity has a failure path or a completion path to a subsequent activity and no success path

Retry Attempts

In the General settings of any activity is a property called Retry. This is the number of times Data Factory can try to execute the activity again if the initial execution fails. The default number of retries is 0. If we execute a pipeline containing one activity with the default Retry setting, the failure of the activity would cause the pipeline to fail.

Data Factory Web UI  showing the General settings of an activity with the Retry property
Data Factory Activity General settings showing the Retry Property

I often set retries to a non-zero number in copy activities, lookups, and data flows in case there are transient issues that would cause a failure that might not be present if we waited 30 seconds and tried the activity again.

Data Factory Monitoring activity runs within a pipeline. An activity failed the first time, was rerun, and succeeded the second time
Output of a Data Factory activity that was executed and initially failed. Since it was set to have 1 retry, it executed again and succeeded. If nothing else in the pipeline failed, the pipeline would report success.

Dependency with a Failure Condition

Activities are linked together via dependencies. A dependency has a condition of one of the following: Succeeded, Failed, Skipped, or Completed. If we have a pipeline containing Activity1 and Activity2, and Activity2 has a success dependency on Activity1, it will only execute if Activity1 is successful. In this scenario, if Activity1 fails, the pipeline will fail.

Activity1 has a success path to Activity2. Activity1 failed so Activity2 did not execute.
Because Activity1 failed, Activity2 is not executed and the pipeline fails.

But if we have a pipeline with two activities where Activity2 has a failure dependency on Activity1, the pipeline will not fail just because Activity1 failed. If Activity1 fails and Activity2 succeeds, the pipeline will succeed. This scenario is treated as a try-catch block by Data Factory.

Activity1 has a failure path to Activity2. Activity1 failed and Activity2 succeeded.
The failure dependency means this pipeline reports success.

Now let’s say we have a pipeline with 3 activities, where Activity1 has a success path to Activity2 and a failure path to Activity3. If Activity1 fails and Activity2 succeeds, the pipeline will fail. The presence of the success path alongside the failure path changes the outcome reported by the pipeline, even though the activity executions from the pipeline are the same as the previous scenario.

Activity1 has a success path to Activity2 and a failure path to Activity3. Activity1 failed, Activity2 was skipped, and Activity3 succeeded.
Activity1 fails, Activity2 is skipped, and Activity3 succeeds. The pipeline reports failure.

What This Means for Monitoring

This difference between pipeline and activity status has a few implications of which we should be aware as we monitor our data factories.

If we are using Azure Monitor alerts, we need to understand that setting an alert for pipeline failures doesn’t catch all activity failures. If there is a retry of an activity and the second attempt is successful, there would be an activity failure but no pipeline failure.

Conversely, if we set an alert to notify us of activity failures, and we have a pipeline designed with the try-catch pattern, we might get an alert about an activity failure, but the pipeline would still show success. You would need to look at the status of the activities within the pipeline execution to see the failure of which you were alerted.

For many of my implementations, just setting an alert to notify me when any activity failure occurs is fine. For others, I really only care if the pipeline fails. Sometimes I need to set more specific alerts where I choose only certain activities to monitor for failure.

You could also use the Data Factory SDK to roll your own monitoring solution. If you write PowerShell, C#, or Python, you can retrieve the status of any pipeline or activity run and take subsequent actions based upon the results.

What This Means for Pipeline Design

You may need to add activities to your pipelines to support your monitoring scenarios if you need something more customized than what is offered from Azure Monitor and don’t want to use the SDK.

If you have notification needs that Azure Monitor can’t accommodate, you could add an activity in your pipelines to send an email based upon your desired activity outcomes. You can cause that activity to execute using an activity dependency alone, or by combining it with a variable and an If Condition activity.

There are times where we may need a pipeline to fail even though we are using the try-catch pattern that results in pipeline success. In that case, I add an additional web activity to the end of my pipeline failure path that hits an invalid url like http://throwanerror.  The failure of this activity will cause the pipeline to fail. Keep monitoring and notifications in mind as you design your pipelines so you are alerted as appropriate.

Azure Data Factory Activity and Pipeline Outcomes

To help clarify these concepts I made the below guide to Data Factory activity and pipeline outcomes. Feel free to share it with others. You can download it directly from this link.

Contact the Author | Contact DCAC

SQL Index Creation Using DROP EXISTING= ON

Published On: 2021-02-17By:

When you are making changes to an existing Non-Clustered index SQL Server provides a wide variety of options. One of the more frequently method is DROP EXISTING; in this post you will learn all about that option. This option automatically drops an existing index after recreating it, without the index being explicitly dropped. Let us take a moment understand the behavior of this choice.

DROP EXSITING=ON which is my preferred method, will DROP the current index only after it finishes creating and building the index with the new definition. The pitfall is that if the index does not exist, you will get an error and must create it without the option or set it to OFF. However, the more important benefit of using this one is all about performance. The index will still be used by active queries until it is rebuilt with the new definition.

CREATE NONCLUSTERED INDEX [dcacIDX_ServiceType] ON [dbo].[Accounts]
       [ServiceType] ASC


If index does not exist, you will get a 7999 error.

Msg 7999, Level 16, State 9, Line 1

Could not find any index named ‘dcacIDX_ServiceType’ for table ‘dbo.Accounts’.

There are a few exceptions to keep in mind per

With DROP_EXISTING, you can change:

  • A nonclustered rowstore index to a clustered rowstore index.

With DROP_EXISTING, you cannot change:

  • A clustered rowstore index to a nonclustered rowstore index.
  • A clustered columnstore index to any type of rowstore index.


This option is a cleaner and wont error if the index doesn’t already exist. However, I caution you when using this especially when it is a large table. Using this option drops the index before it creates the new, leaving your system without the previous index definition. This can create a huge performance issue while the system waits for the new index to be created. I know this firsthand, as I did this with a client a few years ago, during the day while trying to fix a performance issue. I created a worse issue while the waiting for the new one to be created. It took 45 mins to create the new index with the new definition which caused CPU to spike to 100% while active queries were trying to come through. Which sadly, in turn, slowed down the new index creation.

DROP INDEX IF EXISTS [dcacIDX_ServiceType] ON [dbo].[Accounts]


CREATE NONCLUSTERED INDEX [dcacIDX_ServiceType] ON [dbo].[Accounts]

       [ServiceType] ASC    



Now I should also note that the DROP_EXISITING method is also faster when you must modify a Clustered index. Every Non-Clustered index refers to the Clustered index using what is called a clustering key, essentially, a pointer to the row in the clustered index. When a clustered index is dropped and re-created, SQL Server must rebuild the Non-Clustered indexes on that table. In fact, it gets done twice by actually rebuilding them upon drop and rebuild again on the create of the Clustered index. Using DROP_EXISTING=ON prevents you from having to rebuild all these indexes as their keys will stay the same, thus making it significantly faster.

The reason I took the time to write this quick blog is to remind those to consider using the DROP EXSITING=ON rather than using the DROP and CREATE method when possible. Do not introduce a performance issue when you can avoid it and you can more efficiently make the desire changes you need.  Just a friendly reminder.

The post SQL Index Creation Using DROP EXISTING= ON appeared first on A Shot of SQLEspresso.

Contact the Author | Contact DCAC

Zooming In on a Power BI Report

Published On: 2021-02-11By:

Have you ever tried to use your browser to zoom in on a visual in a Power BI report? If you simply published your report and then zoomed in, you might have experienced something like the video below.

Trying to zoom in on a report that is set to Fit to page can be confusing for users.

With the default settings of the report, when you zoom in, only the menus around the report change. This is because of report responsiveness and the View setting. By default, reports are set to Fit to page. Power BI is refitting the report to the page every time you zoom.

Why would we need to zoom in?

There might be accessibility or compliance reasons to allow people to zoom in. For instance, WCAG 2.1 Success Criterion 1.4.4 states “Except for captions and images of texttext can be resized without assistive technology up to 200 percent without loss of content or functionality.” People with low vision or other vision impairments might benefit from the ability to zoom within a report page.

Another reason might be that a user simply wants to focus on one chart at a time. Power BI does have a Focus mode. Unfortunately, it currently does a poor job of increasing the font sizes on the visual that is in focus, often rendering it unhelpful.

Column chart shown in Focus Mode in Power BI with large bars and tiny text
Power BI visual shown in Focus Mode

What Are Our Other Options?

There are a couple of workarounds for users who need to zoom in on visuals.

  1. We can set the report view or teach users to set the report view to Actual size. This then allows the browser zoom to work as anticipated. We probably don’t want to set all our reports to actual size because we would lose valuable screen real estate and diminish the experience for some users who don’t need to zoom. Having the report automatically fit to the user’s screen is usually helpful. But if users can change that setting as they need too, that might be ok. Here’s an example of how that works.
Setting the view on the Power BI report to Actual size allows users to zoom with the browser

2. We can use assistive technology to zoom. Both Windows and MacOS have built-in magnifier functionality. The downside to this is that using it would not satisfy WCAG 2.1 Success Criterion 1.4.4. I think there is still some gray area/lack of expertise as far as how people are making data visualizations WCAG compliant because it’s part text and part image/shape (although it’s not rendered on the page as an image in Power BI). I’m usually more concerned that users get the information they need an have a good experience. But I want to note this in case you are trying to be WCAG compliant and might run into this issue. Here’s an example of using the magnifier in Windows. You can still use the interactivity in the report. And you can change the size of the magnification window and the level of magnification.

The Windows Magnifier allows users to zoom in to part of the report page while retaining interactivity

3. Zooming in on the report page with a touch screen works fine. If users have tablets or laptops with a touch screen, they can use their fingers to zoom and it will behave as expected. Here’s a video that shows that experience.

Those are all the workarounds I’m aware of, but I’m interested to hear how you have worked around this issue. If you have other suggestions please leave them in the comments.

I found an existing idea about increasing the text size within visuals in focus mode on I’ve added my vote to it, and I hope you’ll do the same.

Contact the Author | Contact DCAC
1 2 3 484


Globally Recognized Expertise

As Microsoft MVP’s and Partners as well as VMware experts, we are summoned by companies all over the world to fine-tune and problem-solve the most difficult architecture, infrastructure and network challenges.

And sometimes we’re asked to share what we did, at events like Microsoft’s PASS Summit 2015.

Awards & Certifications

Microsoft Partner   Denny Cherry & Associates Consulting LLC BBB Business Review    Microsoft MVP    Microsoft Certified Master VMWare vExpert
INC 5000 Award for 2020    American Business Awards People's Choice    American Business Awards Gold Award    American Business Awards Silver Award    FT Americas’ Fastest Growing Companies 2020   
Best Full-Service Cloud Technology Consulting Company       Insights Sccess Award    Technology Headlines Award    Golden Bridge Gold Award    CIO Review Top 20 Azure Solutions Providers
Share via
Copy link